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INTRODUCTION

We present a new method for fast transport
synthetic acceleration (TSA) of source iterations
for Sy problems, using a pure absorber problem
“stretched” to have a mean free path comparable to
a diffusion length. The resulting scheme is at first
glance unstable, with a large negative eigenvalue at
high spatial frequencies, but it can be made effec-
tive using (i) a low-pass filter, (ii) a Krylov method,
or both. The stretched error correction and the filter
are implemented with the same spatial discretiza-
tion as the underlying source iteration, the Explicit
Slope (ES) scheme [1]. In this summary (Part I),
we describe the acceleration method, summarize
results of Fourier analysis, and give test results in
homogeneous planar geometry. In the second sum-
mary [2], we describe significant additional fea-
tures in heterogeneous problems.

STRETCHED AND FILTERED TSA (SFTSA)

Let ¢!+ 2 be the scalar flux after the [ source
iteration to a steady-state planar-geometry trans-
port problem,
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where n is the discrete ordinate index. The ex-
act scalar flux error correction, F(z) = ¢(z) —
¢ (x) = E:Ll frn(z)w,, is determined by the
transport equation driven by the residual,
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Fast approximate solutions to Eq. (2), by diffusion
synthetic acceleration (DSA) or transport synthetic
acceleration (TSA) [3, 4], may be used directly
by setting ¢! = ¢'*3 + F, or by “wrapping”
a Krylov method around the accelerated scheme
[1-6]. For homogeneous-media source iteration
problems, the-slowest converging modes are low

spatial-frequency modes, which the diffusion ap-
proximation to Eq. (2) eliminates very effectively
[4].

For any constant € > 0, the following stretch-
ing transformation of the data in Eq. (2) leaves the
diffusion approximation invariant,
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a — €Xq, gr < €gr. (3)
Hence, we may pick any constant “stretch” € and
expect Egs. (2) and (3) to still eliminate the low fre-
quency error modes. If we choose e = /2; /%5, =
1/+4/1 — ¢, then the stretched version of Eq. (2) is

given by
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which is a pure absorber problem with mean free
path 1/(X4/1 —¢) = 1//Zi8, = /3L, where
L is a diffusion length. We use an S quadra-
ture set for Eq. (4), so that the cost is less than
than of a source iteration sweep with quadrature
order N > 2. Also, since the diffusion Marshak
vacuum boundary condition is not invariant to the
stretching transformation, we use an albedo bound-
ary condition for Eq. (4) whenever the correspon-
ing boundary condition for Eq. (2) is a vacuum.
The albedo boundary condition at © = 0 that leaves
the stretched boundary condition equivalent to an
unstretched Marshak boundary condition (in the P
approximation) is given for p,, = —pim > 0 by
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This transformation is important for stability in ho-
mogeneous media problems.

An infinite medium Fourier analysis of this ap-
proach with the ES spatial discretization [1] gives
the « = 0 plot in Figure la for ;A = 1 and
¢ = 0.9999, and similar plots for other cell thick-
nesses and scattering ratios. As is evident, the low
frequency error modes are effectively eliminated,
but the high frequency modes are unstable with a

fm:
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Figure 1: Stretched Filtered TSA Fourier Eigenvalues for ¥ h = 1, ¢ = 0.9999.

negative eigenvalue. To stabilize the correction, we
apply the low-pass filter

iad%gi(m) + X1 — cg+(x)
= Zoflzc p(y), )

where « is the filter strength, to obtain the updated
scalar flux

¢t (z) = ¢ (2) + g1 (2) +9-(z). (6

The filter boundary conditions for Eq. (5) match
those of Eq. (2), not those of Eq. (4). This is also
important for stability.

The effect of « is demonstrated in Figure 1
for a specific ¥4 and c. Raising o monotonically
damps the high-frequency instability but eventu-
ally drives the correction to zero and restores unac-
celerated source iteration as & — oo. The spectral
radius of the resulting Stretched, Filtered, Trans-
port Synthetic Acceleration (SFTSA) scheme [Eqs.
(1), (4), (5), and (6)] is given by either the max-
imum positive eigenvalue or the maximum nega-
tive eigenvalue, depending on whether « is large
or small, respectively. For given values of Xh
and ¢, a filter strength v can be calculated, using
the Fourier analysis, that minimizes the spectral ra-
dius (the maximum positive eigenvalue equals the
maximum negative eigenvalue), as demonstrated in
Figure 1b. For optimum performance in restarted
GMRES, it is desirable for the maximum positive
eigenvalue to be a finite distance less than unity,
while minimizing the difference between mini-
mum and maximum eigenvalues [1, 5, 6]. Negative
eigenvalues < —1 are allowed. By experimenta-
tion, we found that by using values of o that main-
tain the maximum positive eigenvalue less than
7z (.36 while minimizing the spread, as in Figure

1c, we obtain nearly optimal performance (as com-
pared to other values of o) when restarted GMRES
is “wrapped” around the SFTSA scheme.

NUMERICAL RESULTS

We have implemented SFTSA with the ES
spatial discretization [1] in a Fortran test code that
can perform SFTSA alone, or SFTSA precondi-
tioned Krylov iteration [1]. Our numerical tests
validate the Fourier analysis. In Table 1, we show
selected results for two 10,000 cell S1¢ test prob-
lems with vacuum boundaries, a uniform volume
source @ = 0.01, and £;h and c as indicated. In
the tabulated results, we divide total run times by
the time to run a single source iteration sweep. We
compare SFTSA (labelled SFT) using the « that
optimizes spectral radius as in Figure 1b (precom-
puted and looked up in a table) to (i) unprecondi-
tioned GMRES (restarted GMRES with maximum
subspace dimension 20, labelled G), (ii) SFTSA
preconditioned GMRES using o optimized as in
Figure 1c, and (iii} SFTSA preconditioned GM-
RES using oo = 0.3 fixed. The fixed « = 0.3
is greater than nearly all values of « in the opti-
mal table, and hence overfilters most rows in Ta-
ble 1. We also compare to a DSA calculation,
which represents the ideal. Our convergence crite-
rion of 1073 residual norm means that source iter-
ation alone would take roughly 180,000 iterations
to converge Problem A and 1800 iterations to solve
Problem B.

CONCLUSIONS

Though not as effective as DSA in this one-
dimensional setting, SFTSA is nonetheless an ef-
fective acceleration strategy. Since the error cor-



Table 1: Numerical Results: CPU Time Relative to a Single Source Iteration Sweep

Xih || SFT (qopt) G G-SFT (agpt) | G-SFT (o = 0.3) | DSA
01 | 19 4400 16 33 10
Prob. A 1 84 1477 29 54 11
c=0.9999 | 10 59 90 24 29 7
100 12 10 11 11
0.1 16 105 13 25 11
Prob. B 1 18 54 14 20 13
c=0.99 10 10 12 10 10
100 7 5 7 8 5

rection and filter equations, Eqgs. (4) and (5), are
pure absorber problems, they are as cheap to solve
as a source iteration sweep. For idealized homoge-
neous media problems, a specific filter strength can
be derived by Fourier analysis to achieve optimal
performance. With the Krylov method “wrapped”
around SFTSA, there is less sensitivity to the filter
strength, and reasonable efficiency is achieved with
a fixed filter strength, @ = 0.3. This is important
for heterogeneous problems, as explained in Part II
[2].

SFTSA uses the same spatial discretization as
the underlying source iteration scheme. This is
one significant advantage of SFTSA over DSA,
for which the spatial discretization must be de-
rived from the source iteration scheme with special
care. In our DSA results in Table 1, we used a tri-
diagonal solver for the diffusion solution at each
iteration. In multi-dimensional problems, the dif-
fusion solution in DSA requires a separate iterative
solution method. The pure absorber stretch and fil-
ter steps of SFTSA, in contrast, are each solved in
less time than it takes to conduct a single source it-
eration sweep. These two advantages make SFTSA
an attractive alternative to DSA for complex spatial
discretizations and grids.
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